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Abstract—The emerging 5G networks are intended to enable
new feedback control applications, run over multiple wireless
interfaces. 5G wireless technologies then need to match the state-
of-the-art wired network performance, experienced by present
commercial feedback control systems. Fibre-optic circuit switched
communication is characterized by constant and very low loop
delays, uniform and very high sampling rates, very low error
rates and an almost unlimited capacity. The non-trivial challenge
is then to meet these characteristics with a packet switched
wireless 5G network that may be associated with varying latency,
time varying sampling rates, significant error rates and a varying
air-interface capacity. The paper contributes with a summary
and discussion of basic requirements that need to be in place for
successful commercial deployment of feedback controllers using
such 5G wireless networks. One key requirement is a need to
mitigate the problem of delay skew between different transmis-
sion paths. A novel delay skew data flow control algorithm is
therefore proposed for 5G dual connectivity. The stability of the
controller is analyzed and conditions for global ℒ2-stability are
stated. Test bed results are also reported in the paper, indicating
that the delay skew controller can meet the requirements on the
delay characteristics of 5G networks.

I. INTRODUCTION

Fifth generation wireless networks aim to expand wireless
technology to new fields of application, among these feed-
back control using critical machine-type communications (C-
MTC) [4]. Examples of new use cases include massive high
bandwidth industrial mobile robot control [20] and the tactile
internet [9], [10], where virtual reality is expected to become
a significant use case [14]. Automatic control of rotating
machinery also benefits, since wireless feedback signaling
avoids the need for electro-mechanical devices like slip rings
[1].

However, the reduced latency of the new 5G wireless
interfaces is only one of several enablers for a successful
deployment of feedback control applications. The reason is
that the 5G networks will be packet switched, sometimes with
control algorithms located in the cloud, resulting in feedback
control application data transfer over shared internet connec-
tions. This means that the end to end data transport perfor-
mance experienced by the feedback control applications may
be subject to varying delay, non-uniform sampling, data errors,
and a varying capacity caused by wireless fading [11], [13].

These effects are obviously less pronounced when dedicated
fibre-optic and copper wire based communication is used.
Therefore, to enable the cost saving and increased flexibility
associated with a replacement of wire, 5G wireless networks
may need to be further controlled to reduce the challenges
listed above. An additional challenge arises when millimeter-
wave carrier frequencies are used, since the increased ra-
dio shadowing then makes multi-point wireless transmission
needed for coverage reasons [4], [11]. The feedback control
application data signaling may then also need to be split over
multiple paths, while keeping the delay characteristics aligned
between the different transmission paths. New methods for
delay control are therefore needed in support of 5G wireless
networked feedback control applications. This fact has also
been noticed by the IEEE control systems society in [12].

The contributions of the paper therefore include a first
discussion of the effect of delay, delay variation, sampling and
capacity, on feedback controllers and control systems running
over packet switched 5G multi-point transmission networks.
This motivates the need for network control algorithms that
mitigate the challenges caused by the packet switched wireless
combination. As a second contribution, a non-linear round trip
delay skew feedback controller for 5G dual connectivity (DC)
based C-MTC is proposed. This controller ensures that the
packet switched data transport used by the C-MTC application
feedback controllers is characterized by better defined delay
properties. The round trip delay skew algorithm is also proved
to be globally stable. It is stressed that this is a practically
relevant result, since the C-MTC applications rely on stable
delay properties of the underlying data transport, at all times.
The control algorithm is also evaluated using a test bed C++
implementation. The obtained results show that the algorithm
can regulate away the delay variations discussed above.

Recent work related to the present paper include [2], [3],
[8] and [19]. The paper [2] also treats a delay skew controller
for C-MTC. The present paper differs in that the focus is on
general (delay) requirements for C-MTC. In addition, the non-
linear processing differs, thereby allowing a stability analysis
based on a combination of the Nyquist- and Popov-criteria
[15], rather than on the more advanced integral quadratic
constraint (IQC) method [7] used for the 𝑛+1-node controller
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treated in [2]. The DC algorithm described in [19] is designed
to control the delay skew from the data split point to the
downlink wireless interface, thereby securing the simultaneous
reception of originally adjacent data packets, in the mobile.
The control objective of the present paper is different and
focused on control of the round trip delay skew from the data
packet split point to the mobile interface connecting to the
controlled plant at the other side of the air interface, and back.
This provides the possibility to control the loop delays expe-
rienced by feedback control applications. One consequence as
compared to [19], is that the inner control loops need to be
selected as the one described in [17]. The papers [3] and [8]
both treat a multi-point delay skew controller for control of
the downlink delay skew, as in [19]. Here [8] treats classical
sensitivity and regulation performance properties, while [3]
analyzes the stability properties with IQC methodology.

The layout of the paper is as follows. Section II is focused
on requirements for feedback control over wireless connec-
tions. The round trip delay skew control algorithm is then
outlined in section III and evaluated in section IV. The paper
ends with concluding remarks in Section V.

II. C-MTC REQUIREMENTS FOR FEEDBACK CONTROL

APPLICATIONS

Control systems are best designed from empirical and/or
theoretical models. Very often, linear models are used, see e.g.
[5]. In practice, various constraints also need to be accounted
for and in such cases linear models may be augmented with
constraint handling using model predictive control [6]. As will
be seen, the possibility to easily apply the standard controller
design techniques depends on well defined delay properties
of the bearer of the control system signals. Later in the
paper the exact location of the controller node, the network
delays, the wireless interfaces and the plant node with the UE
interface will be defined. In the present section, the effect of
delay is considered from the point of view of the feedback
control application. In particular, wireless packet switched
delay effects are characterized. This leads to the formulation
of a set of basic requirements for 5G network design.

A. Effects of delay on stability

To quantify the effect of delay on stability it is assumed that
the continuous time transfer function of the linear system is
given by 𝐺(𝑠) and that the transfer function of the controller
is given by 𝐶(𝑠), where 𝑠 is the Laplace transform variable.
In addition the closed loop system is affected by a round trip
loop delay 𝑇 . The loop gain of the system is then given by

𝑔(𝑠) = 𝐶(𝑠)𝐺(𝑠)𝑒−𝑠𝑇 . (1)

Under mild conditions the stability of the closed loop linear
system of Fig. 1 is then given by

Nyquist Criterion, [15] Theorem 6.6.58: The system with
loop gain 𝑔(𝑠) of Fig. 1 is ℒ2-stable if and only if the Nyquist
plot

𝜔 ∈ [0,∞) → 𝑅𝑒[𝑔(𝑗𝜔)] + 𝑗𝐼𝑚[𝑔(𝑗𝜔)] ∈ 𝒞

Fig. 1. Simple feedback.

Fig. 2. Nyquist plots for delays of 𝑇 = 0.005 𝑠 (green), 𝑇 = 0.015 𝑠 (red)
and 𝑇 = 0.045 𝑠. (blue).

is bounded away from and does not encircle −1 + 𝑗0.
Here 𝜔 denotes the angular frequency. ℒ2-stability implies

that all internal signals 𝑥(⋅) of the closed loop system are finite
in the sense that ∫ ∞

0

∣𝑥(𝑡)∣2𝑑𝑡 <∞, (2)

provided that the external inputs meet the same condition [15].
As an illustration, Nyquist plots for varying delays are

shown for the lead lag controller structure of [19]. The
illustrated control system has a loop gain given by

𝑔(𝑠) = 69.43
(𝑠+ 2.30)

(𝑠+ 0.23)

(𝑠+ 30.49)

(𝑠+ 69.51)

1

𝑠
𝑒−𝑠𝑇 . (3)

It can be seen that the loop is stable for delays up to just above
15 𝑚𝑠. It is evident that the delay of the loop needs to be kept
low enough to secure stability.

B. Effects of delay on regulation performance

As may also be seen in Fig. 2, an increasing delay causes the
critical point of intersection between the Nyquist plot and the
negative real axis to correspond to a point further out on the
Nyquist plot. The shape of the Nyquist plot is also changed.
This is analyzed in [16]. To understand the main result of [16]
the sensitivity function 𝑆(𝑠) needs to be defined [5]. Fig. 3,
where 𝑤(𝑠) denotes a disturbance, gives

𝑦(𝑠) = (1− 𝑆(𝑠))𝑦𝑟𝑒𝑓 (𝑠) + 𝑆(𝑠)𝑤(𝑠), (4)

where

𝑆(𝑠) =
1

1 + 𝐶(𝑠)𝐺(𝑠)𝑒−𝑠𝑇
=

1

1 + 𝑔(𝑠)
. (5)

The sensitivity function is central in control and quantifies the
suppression of an unwanted disturbance 𝑤(𝑠) on the output



Fig. 3. Block diagram defining the sensitivity function 𝑆(𝑠).

Fig. 4. Block diagram for which the Popov criterion is formulated. 𝑢1 and
𝑢2 are external input signals.

signal. To obtain good suppression the loop gain needs to
be high. As shown next this is not possible when the delay
increases. In order to study the effect of large delays on the
sensitivity function a system with an additional saturation
in the control loop is considered, as shown by Fig. 4. The
saturation is given by

𝜑(𝑢) =

⎧⎨
⎩
𝑘𝑢𝑚𝑎𝑥, 𝑢 ≥ 𝑢𝑚𝑎𝑥

𝑘𝑢, 𝑢𝑚𝑖𝑛 < 𝑢 < 𝑢𝑚𝑎𝑥

𝑘𝑢𝑚𝑖𝑛, 𝑢 ≤ 𝑢𝑚𝑖𝑛

. (6)

Here 𝑘 is the static gain, while 𝑢𝑚𝑖𝑛 and 𝑢𝑚𝑎𝑥 denote the
saturation limits. The reason for the inclusion of a saturation
is that control signal limitations are of central importance e.g.
in servo control applications [5], [15]. The analysis therefore
becomes nonlinear, and it is based on the Popov criterion given
by

Popov Criterion, [15] Theorem 6.7.63: Consider the system
of Fig. 4. Assume that the time invariant static nonlinearity
𝜑(⋅) fulfils

0 ≤ 𝜎𝜑(𝜎) ≤ 𝑘𝜎2,
and that 𝑢1 ∈ ℒ2, 𝑢2 ∈ ℒ2, 𝑢2 ∈ ℒ2. Under these conditions
the system is ℒ2-stable if there exist constants 𝑞, 𝛿, such that
the Popov plot

𝜔 ∈ [0,∞) → 𝑅𝑒[𝑔(𝑗𝜔)] + 𝑗𝜔𝐼𝑚[𝑔(𝑗𝜔)] ∈ 𝒞
is entirely to the right of a line through −1/𝑘 + 𝛿 + 𝑗0 with
slope 1/𝑞, for some 𝑞 ≥ 0 and some 𝛿 > 0.

In the analysis of [16], the case where 𝑇 → ∞ is
considered. The key step is to use the Popov criterion and
to prove that the limiting case when 𝑇 → ∞ can instead
be analyzed by the case where 𝜔 → 0. This means that the
interpretation given by the first sentence of this subsection is
indeed true. When the Popov criterion is applied for 𝜔 → 0,
it follows that ℒ2-stability cannot hold if

𝑔(0) >
1

𝑘
. (7)

Equations (4) and (5) then imply
Theorem 3, [16]: Consider a control loop with a strictly

proper asymptotically stable linear dynamic loop gain, together
with a delay 𝑇 and a saturation. Then, when 𝑇 → ∞, The
Popov criterion cannot imply ℒ2 stability whenever

𝑆(0) ≤ 𝑘

𝑘 + 1
.

The consequence is that when the delay becomes large,
steady state disturbances cannot be suppressed below a certain
level, without risking stability of the control loop.

C. Effects of delay variation on feedback control

Packet switched networks are subject to delay variation. The
present sub-section illustrates the effects such a variation may
have on the application controllers that use the bearers of the
packet switched network.

1) Sampling, computational complexity, controller design
and stability: To begin, consider the system 𝐺(𝑠) of (1), and
assume that sampled feedback signals are available at the set
of times {𝑡𝑘}, 𝑘 = 0, 1, .... To transfer the system to discrete
time form, 𝐺(𝑠) is first written in state space form as the
following ordinary differential equation (ODE)

�̇�(𝑡) = 𝐴𝑥(𝑡) +𝐵𝑢(𝑡) (8)

𝑦(𝑡) = 𝐶𝑥(𝑡). (9)

Here 𝑥(𝑡) is the state vector, 𝐴 the system matrix, 𝐵 the
input gain matrix, 𝑢(𝑡) the control signal, 𝑦(𝑡) the output
signal and 𝐶 the output matrix. The sampling of the ODE
is performed by solving (8) assuming a constant input signal
between the sampling instances, i.e. a zero-order-hold (ZoH)
sampling. Following [5], chapter 4, and solving from 𝑡𝑘 to
𝑡𝑘+1 gives

𝑥(𝑡𝑘+1) = 𝑒𝐴(𝑡𝑘+1−𝑡𝑘)𝑥(𝑡𝑘) +

∫ 𝑡𝑘+1

𝑡𝑘

𝑒𝐴(𝑡𝑘+1−𝜏)𝐵𝑢(𝜏)𝑑𝜏

= 𝐹 (𝑡𝑘+1, 𝑡𝑘)𝑥(𝑡𝑘) +𝐺(𝑡𝑘+1, 𝑡𝑘)𝑢(𝑡𝑘). (10)

Here 𝐹 (𝑡𝑘+1, 𝑡𝑘) is the discrete time system matrix and
𝐺(𝑡𝑘+1, 𝑡𝑘) is the discrete time input gain matrix. The static
output equation (9) is transformed into

𝑦(𝑡𝑘) = 𝐶𝑥(𝑡𝑘). (11)

When the sampling is uniform, i.e.

{𝑡𝑘} = {𝑘𝑇𝑠}, 𝑘 = 0, 1, ... (12)

where 𝑇𝑠 is the sampling period, the discrete time system and
input gain matrices simplify to

𝐹 (𝑡𝑘+1, 𝑡𝑘) = 𝐹 = 𝑒𝐴𝑇𝑠 , (13)

𝐺(𝑡𝑘+1, 𝑡𝑘) = 𝐺 = 𝐴−1(𝑒𝐴𝑇𝑠 − 𝐼)𝐵. (14)

It is a significant advantage that (13) and (14) can be pre-
computed since that reduces the computational complexity of
(10) significantly. In addition to the computational aspects, it
is stressed that the stability analysis of a time varying system
is more difficult than the one for a time invariant one, see



e.g. [15]. Since stability is such an important engineering
property, time variable models are often avoided. Nevertheless,
several controller design methods do allow a time varying
model, among them the Linear Quadratic Gaussian (LQG)
design method [5]. However, since both the system matrices
and the controller gains need re-computation at each sampling
instance, the computational complexity is much higher than
for the time invariant counterpart based on uniform sampling.
Another advantage of using uniform sampling together with
linear systems is the wide variety of standard controller design
methods. I

2) Effects of varying data flow delay: When the delay of
the packet switched data bearer is varying, the delay between
transmission of controller commands 𝑢(𝑡𝑘) from a controlling
node to the arrival of feedback information from the plant at
the other side of the air interface also varies. The consequence
is that uniform sampling instances at the controller node
become asynchronous with the feedback signals.

One solution is then to define the sampling instant as the
time when feedback information arrives back at the controlling
node. This allows a use of the exact sampling relation (10).
The penalty would be a very significant computational cost.

A second solution would be to enforce uniform sampling
and to take action to account for the resulting sampling errors.
To compute these errors, it is assumed that 𝑡∗𝑘 is the latest
instance when a sample is taken preceding 𝑘𝑇𝑠, and that 𝑡∗𝑘+1

is the next instance when a sample is taken. The sampling
instances are defined by the arrival of feedback information
in the controller node. It is also assumed that 𝑢(𝑡∗𝑘) is used in
the interval 𝑘𝑇𝑠 ≤ 𝑡 < (𝑘+1)𝑇𝑠, that 𝑥(𝑘𝑇𝑠) is approximated
with 𝑥(𝑡∗𝑘), and that equations (13) and (14) are used, to
enforce uniform sampling. This means that the state error, at
the sampling instances, obey

Δ𝑥(𝑘𝑇𝑠) = 𝑒
𝐴(𝑘𝑇𝑠−𝑡∗𝑘)𝑥(𝑡∗𝑘)

+𝐴−1(𝑒𝐴(𝑘𝑇𝑠−𝑡∗𝑘) − 𝐼)𝐵𝑢(𝑡∗𝑘−1)− 𝑥(𝑡∗𝑘), 𝑡 = 𝑘𝑇𝑠, (15)

Δ𝑥((𝑘 + 1)𝑇𝑠) = 𝐹 (𝑥(𝑡
∗
𝑘) + Δ𝑥(𝑘𝑇𝑠)) +𝐺𝑢(𝑡

∗
𝑘)

−𝐹𝑥(𝑡∗𝑘)−𝐺𝑢(𝑡∗𝑘) = 𝐹Δ𝑥(𝑘𝑇𝑠), 𝑡 = (𝑘 + 1)𝑇𝑠. (16)

It can be seen that Δ𝑥(𝑘𝑇𝑠) is small whenever the error of
the sampling instances is small. The error of (16) manifests
itself as a modeling error. The controller design then requires
a corresponding back-off to maintain stability. This results in
a degradation of performance, c.f. [5] chapter 6.

D. C-MTC capacity dimensioning

To estimate the air interface capacity needed to sustain
closed loop feedback control of high bandwidth robotic ma-
chinery in a manufacturing plant using wireless connections,
a rough dimensioning example is useful.

Example 1: Consider a plant with 100 mobile robots used
for manufacturing purposes. Assume that there are 10 degrees
of freedom of each robot, requiring one feedback signal and
one control signal each. Assuming a required bandwidth of
250 𝐻𝑧 leads to a sampling frequency close to 5 𝑘𝐻𝑧 (10

times the Nyquist frequency), a figure consistent with current
5G standardization. A round trip loop delay of 1 𝑚𝑠 or better
is needed to avoid a too large phase loss. If all signals are
encoded with 4 bytes, and if a code rate of 1/5 is assumed, the
total bit rate for each machine becomes 2×10×4×8×5000×
5 𝑏𝑖𝑡𝑠/𝑠 = 16𝑀𝑏𝑖𝑡/𝑠. The plant therefore requires a capacity
exceeding 1.5 𝐺𝑏𝑖𝑡/𝑠. This is reasonable for the first 5G DC
deployments. In case 0.5 𝑚𝑠 is allocated for transmit data
buffering, user data corresponding to 1000 bytes per machine
will reside in each buffer on average.

E. Requirements

It should now be clear that in case a packet switched
bearer of control information is associated with a large delay,
feedback control stability margins, disturbance rejection per-
formance and closed loop bandwidth are negatively affected.
In addition, in case of significant delay variations, additional
negative impacts is likely to affect the application perfor-
mance. The feedback control system application may either
need to resort to time varying controller design, a path that
can result in a very high computational complexity, or it has to
apply additional margins to account for sampling errors. Such
margins tend to reduce the performance of the application.
Finally, the high capacity that may be needed then dictates that
air interface resources need to be efficiently used. In particular
this means that data should (almost) always be available at the
air-interface for transmission

Together this means that the following basic requirements
can be stated for the use of 5G packet switched wireless
networks for automatic control.

Loop delay: The round trip (single path) loop delay
should be minimized.

Utilization: The air interfaces should (almost) always
be fully utilized.

Delay variation: The round trip delay variation should be
minimized.

Delay alignment:Round trip delays over multiple air inter-
faces should be aligned.

In the following section a new delay skew control algorithm
is introduced. This algorithm is designed to control the loop
delays, while simultaneously managing the utilization and
aligning the loop delays.

III. ROUND TRIP DELAY SKEW CONTROL FOR 5G DUAL

CONNECTIVITY

A. Dual connectivity for C-MTC in 5G

5G DC allows simultaneous transmission over two wireless
interfaces. This improves reliability when radio shadowing
occurs at high carrier frequencies [11]. Fig. 5 shows that the
plant controllers are assumed to be located in or near the
primary/controller node to minimize latency. Control signals
and feedback signals are sent between the plant controllers
and the plant at the other side of the wireless interfaces. To
meet the delay alignment requirement an outer loop round trip
delay skew controller is operating in the primary node, below
the application layer, c.f. [19]. The transmit data queues buffer



Fig. 5. C-MTC layers in 5G dual connectivity. In case networked adaptive controllers would be run at the application layer, recursive networked identification
algorithms would be needed as well, c.f. e.g. [18] and [21]

against fast fading, securing that the air interfaces experience
a high utilization. They are also the actuator compensating for
the possibly varying fronthaul delays. The inner loops control
the data packets in flight so that the round trip delays computed
by the outer loop controller are met. Further details on DC is
available in [17] and [19].

B. Round trip delay skew cascade control

The round trip delay skew controller is depicted in Fig. 6.
As can be seen there are two inner loops, one handling the
data transfer for the primary node and one handling the data
transfer for the secondary node. These inner loop controllers
are window based [17]. They control the time of flight for
application data packets from the data split point, over the
fronthaul interface to one of the transmission nodes, to the
user equipment (UE) interface of the plant node, and back
until the acknowledgment corresponding to each package is
received back at the data split point. The flow is strictly one
directional which means that there is a saturation in each inner
loop controller. The inner loop controllers utilize high gain
static feedback. The reason is that this results in global ℒ2-
stability, irrespective of the static feedback gain and the round
trip loop delay [17]. As motivated in detail in [2] and [17], the
inner loop controllers can be modeled by the transfer functions

𝐺𝑖𝑛𝑛𝑒𝑟
𝑖 (𝑠) =

𝐶𝑖

(
1− 𝑒−𝑠𝑇𝑅𝑇𝑇

𝑖

)

𝑠+ 𝐶𝑖

(
1− 𝑒−𝑠𝑇𝑅𝑇𝑇

𝑖

) , 𝑖 = 1, 2. (17)

Here 𝑇𝑅𝑇𝑇
𝑖 , 𝑖 = 1, 2, denotes the round trip delay of each

inner loop, while 𝐶𝑖, 𝑖 = 1, 2 denotes the static feedback gain
of each inner loop. Note that (17) assumes that the saturations
of the inner loops represent inactive constraints, with the linear
region of the saturations having unity gains. The first condition
can be enforced with a proper reference value setting, adding
delay to the total delay budget that is set by 𝑇𝑅𝑇𝑇

𝑟𝑒𝑓,𝑠𝑢𝑚(𝑠).
The outer round trip delay skew control loop of Fig. 6

operates as follows. The round trip delays 𝑇𝑅𝑇𝑇
1 (𝑠) and

𝑇𝑅𝑇𝑇
2 (𝑠) are obtained from each inner loop. The delay sum

control channel acts as the reference channel, while the delay

skew is handled by the delay skew control channel. Therefore
the following feedback signals are formed

𝑇𝑅𝑇𝑇
𝑠𝑘𝑒𝑤 (𝑠) = 𝑇𝑅𝑇𝑇

1 (𝑠)− 𝑇𝑅𝑇𝑇
2 (𝑠), (18)

𝑇𝑅𝑇𝑇
𝑠𝑢𝑚 (𝑠) = 𝑇𝑅𝑇𝑇

1 (𝑠) + 𝑇𝑅𝑇𝑇
2 (𝑠). (19)

The error signals are then formed for each channel, where

𝑒𝑅𝑇𝑇
𝑠𝑘𝑒𝑤(𝑠) = 𝑇

𝑅𝑇𝑇
𝑟𝑒𝑓,𝑠𝑘𝑒𝑤(𝑠)− 𝑇𝑅𝑇𝑇

𝑠𝑘𝑒𝑤 (𝑠), (20)

𝑒𝑅𝑇𝑇
𝑠𝑢𝑚 (𝑠) = 𝑥2(𝑠) = 𝑇

𝑅𝑇𝑇
𝑟𝑒𝑓,𝑠𝑢𝑚(𝑠)− 𝑇𝑅𝑇𝑇

𝑠𝑢𝑚 (𝑠). (21)

Here 𝑇𝑅𝑇𝑇
𝑟𝑒𝑓,𝑠𝑘𝑒𝑤(𝑠) and 𝑇𝑅𝑇𝑇

𝑟𝑒𝑓,𝑠𝑢𝑚(𝑠) are the reference signals.
Typically 𝑇𝑅𝑇𝑇

𝑟𝑒𝑓,𝑠𝑘𝑒𝑤(𝑠) = 0 𝑠, while 𝑇𝑅𝑇𝑇
𝑟𝑒𝑓,𝑠𝑢𝑚(𝑠) is set to a

value consistent with the total round trip time delay budget for
the round trip delay skew controller. For a 1 𝑚𝑠 requirement
the total delay budget would e.g. be 2 𝑚𝑠. The skew control
error is also processed by the following time domain deadzone

𝑥1(𝑡) =

⎧⎨
⎩
𝑒𝑅𝑇𝑇
𝑠𝑘𝑒𝑤(𝑡)−Δ𝑇𝑠𝑘𝑒𝑤, 𝑒𝑅𝑇𝑇

𝑠𝑘𝑒𝑤(𝑡) > Δ𝑇𝑠𝑘𝑒𝑤
0.0, ∣𝑒𝑅𝑇𝑇

𝑠𝑘𝑒𝑤(𝑡)∣ ≤ Δ𝑇𝑠𝑘𝑒𝑤
𝑒𝑅𝑇𝑇
𝑠𝑘𝑒𝑤(𝑡) + Δ𝑇𝑠𝑘𝑒𝑤, 𝑒𝑅𝑇𝑇

𝑠𝑘𝑒𝑤(𝑡) < −Δ𝑇𝑠𝑘𝑒𝑤.
(22)

The size of the deadzone is hence given by Δ𝑇𝑠𝑘𝑒𝑤 ≥ 0.
The deadzone provides a safety net in case the round trip
delays would become inconsistent with 𝑇𝑅𝑇𝑇

𝑟𝑒𝑓,𝑠𝑢𝑚(𝑠), see [19]
for further details. The error signals are then further processed
by the outer loop controller filters 𝐶𝑠𝑘𝑒𝑤(𝑠) and 𝐶𝑠𝑢𝑚(𝑠),
followed by a static decoupling to give the reference signals
to the inner loops as

𝑇𝑅𝑇𝑇
𝑟𝑒𝑓,1 (𝑠) =

1

2
(𝐶𝑠𝑘𝑒𝑤(𝑠)𝑥1(𝑠) + 𝐶𝑠𝑢𝑚(𝑠)𝑥2(𝑠)) , (23)

𝑇𝑅𝑇𝑇
𝑟𝑒𝑓,2 (𝑠) =

1

2
(−𝐶𝑠𝑘𝑒𝑤(𝑠)𝑥1(𝑠) + 𝐶𝑠𝑢𝑚(𝑠)𝑥2(𝑠)) . (24)

C. ℒ2 - stability

In [19] a related delay skew controller, with the same
structure as in Fig. 6 is proved to be ℒ2-stable, as stated in
Theorem 1 of that paper. The differences to the present paper
are that the inner loops are different and that some external
signals appearing in the controller of [19] do not appear here.
The conditions on the inner loops of [19] state that they shall



Fig. 6. The round trip delay skew control loop in 5G dual connectivity.

be strictly proper and ℒ2-stable. As is evident from (17) the
inner loops of the present paper have a pole excess of 1 and are
hence strictly proper. Furthermore, as proved in [17], the inner
loops are always globally ℒ2-stable. In order to formulate
the stability result for the controller of Fig. 6, the following
quantities need to be defined.

𝐴11(𝑠) =
1

2
𝐶𝑠𝑘𝑒𝑤(𝑠)

(
𝐺𝑖𝑛𝑛𝑒𝑟

1 (𝑠) +𝐺𝑖𝑛𝑛𝑒𝑟
2 (𝑠)

)
, (25)

𝐴12(𝑠) =
1

2
𝐶𝑠𝑢𝑚(𝑠)

(
𝐺𝑖𝑛𝑛𝑒𝑟

1 (𝑠)−𝐺𝑖𝑛𝑛𝑒𝑟
2 (𝑠)

)
, (26)

𝐴21(𝑠) =
1

2
𝐶𝑠𝑘𝑒𝑤(𝑠)

(
𝐺𝑖𝑛𝑛𝑒𝑟

1 (𝑠)−𝐺𝑖𝑛𝑛𝑒𝑟
2 (𝑠)

)
, (27)

𝐴22(𝑠) =
1

2
𝐶𝑠𝑢𝑚(𝑠)

(
𝐺𝑖𝑛𝑛𝑒𝑟

1 (𝑠) +𝐺𝑖𝑛𝑛𝑒𝑟
2 (𝑠)

)
. (28)

The loop gain of the round trip delay skew control channel is
also needed. As shown in [19] it is given by

𝑔(𝑠) = 𝐴11(𝑠)− 𝐴12(𝑠)𝐴21(𝑠)

1 +𝐴22(𝑠)
. (29)

The following result now holds
Theorem 1: Consider the round trip delay skew controller

of Fig. 6 and assume that A1, A2, A4, A7, A8 and A10 of
[19] hold. Then, if the deadzone fulfils

0 ≤ 𝜎𝜑(𝜎) ≤ 1𝜎2

and if the Nyquist plot of 𝐴22(𝑠) given by

𝜔 ∈ [0,∞) → 𝑅𝑒[𝐴22(𝑗𝜔)] + 𝑗𝐼𝑚[𝐴22(𝑗𝜔)] ∈ 𝒞
is bounded away from and does not encircle −1+𝑗0, then the
delay skew control system is ℒ2-stable if there exists constants
𝑞, 𝛿, such that the Popov plot of the delay skew control loop
gain given by

𝜔 ∈ [0,∞) → 𝑅𝑒[𝑔(𝑗𝜔)] + 𝑗𝜔𝐼𝑚[𝑔(𝑗𝜔)] ∈ 𝒞
is entirely to the right of a line through −1+𝛿+𝑗0 with slope
1/𝑞, for some 𝑞 ≥ 0 and some 𝛿 > 0.

Proof: The proof follows by extraction of the relevant
subsets of the proof of Theorem 1 of [19].

Fig. 7. Fronthaul delays for TX node 𝑖 = 1 red and TX node 𝑖 = 2 blue,
together with resulting inner loop queue dwell and round trip times.

IV. TEST BED RESULTS

The C++ testbed implementation described in [19] was used
for performance evaluation. Typical urban channels generated
the scheduled wireless rates, driving the delay skew control
system. The sampling period was 𝑇𝑠 = 250 𝜇𝑠. The inner
loops used 𝐶 = 𝑇−1

𝑠 . The reference signals were 𝑇𝑅𝑇𝑇
𝑟𝑒𝑓,𝑠𝑘𝑒𝑤 =

0.0 𝑚𝑠 and 𝑇𝑅𝑇𝑇
𝑟𝑒𝑓,𝑠𝑢𝑚 = 5.0 𝑚𝑠 meaning that each path was

designed for a round trip delay of 2.5 𝑚𝑠, good enough e.g.
for haptic feedback control. The design procedure described
in [2], [19] resulted in the lag filters

𝐶𝑠𝑘𝑒𝑤(𝑠) = 𝐶𝑠𝑢𝑚 = 1.064
𝑠+ 69.1

𝑠+ 6.9
. (30)

Tustin’s approximation was used for discretization of (30) and
the deadzone was selected as Δ𝑇𝑠𝑘𝑒𝑤 = 0.5 𝑚𝑠. Finally, the
fronthaul delays varied as shown in Fig. 7 The results of Fig.
8 show that the delay skew controller performs as intended.
Note also that the variation of the control signals is consistent
with the variation of the front haul delays.



Fig. 8. Delay skew, delay sum and corresponding errors.

Fig. 9. Control signals.

V. CONCLUSION

The paper discussed the importance of delay characteristics,
when the new 5G wireless networks are used to carry appli-
cation data for feedback control systems. The effects of delay
and delay variation on the stability, performance and com-
putational complexity were treated, resulting in a set of basic
requirements that support a successful deployment. It was also
shown how a new delay skew controller can be used to align
these delay characteristics, between the different transmission
paths of 5G dual connectivity. Conditions ensuring a globally
stable operation were defined, and testbed results indicate that
the delay skew controller is capable of regulating away delay
variations, as intended.
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